Abstract

We have recently reported that a GC-rich palindromic repeat sequence presumably adopts a stable fold-back tetraplex DNA structure under supercoiling. To establish the biological significance of this structure, we inserted this sequence between two direct repeat sequences, separated by 200 bp, in a plasmid. We then investigated the effect of this sequence on homologous recombination events. Here we report that the putative fold-back DNA tetraplex structure induces homologous recombination between direct repeat sequences. Interestingly, this recombination event is independent of recA, a major driving force for homologous recombination. We think that the fold-back structure forces the repeat sequences to come into close proximity and therefore leads to strand exchange. Although triplex-induced recombination has been well documented, our results for the first time directly establish the potential of a tetraplex structure to induce recA-independent homologous recombination in vivo. This finding might have a significant implication for site-directed gene deletion in the context of the correction of genetic defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call