Abstract

ABSTRACTParticle rebound was studied for ten atmospherically relevant inorganics. Experiments were conducted with submicron particles in aerosol form to a relative humidity (RH) of <5% followed by progressive exposure to RH up to 95% for 2 s. At low RH, particles of MgCl2, NaCl, NH4Cl, KCl, (NH4)2SO4, and Na2SO4 crystallized. As RH increased, these particles completed the transition from rebounding to adhering close to their deliquescence RH (DRH). The onset of decreased rebound, however, was below the DRH. Rebound curves for particles of MgCl2, NH4NO3, MgSO4, and NaNO3 had different features than explained by water adsorption and deliquescence. Particles of MgCl2 had rebound curves characterized by two domains, corresponding to its two hydrates. At low RH, particles of MgSO4 and NaNO3 did not crystallize but rebound occurred, suggesting a glassy or high-viscosity though noncrystalline state. Gel formation for MgSO4 can increase viscosity, affecting rebound behavior. Particles of NH4NO3 adhered even to <5...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call