Abstract

Once liberated in their environment, orthodox seeds live in a quiescent dehydrated state not totally exempt of essential molecular events as, for example, the capacity of breaking dormancy during after-ripening. Upon imbibition, if internal regulatory padlocks are released and given adequate external conditions, the quiescent seed is able to "reboot" its system and, thus, germinate. Recent studies unraveled the crucial importance of protein PTMs in seed dormancy, longevity and vigor. As compared to other plant developmental stages, the seed proteome appears quite unique and diverse. Seed proteins encompass several functional classes from primary and secondary metabolism to structural and antimicrobial defense. In the dry state, oxidative damages can occur due to reactive oxygen and nitrogen species produced by non-enzymatic reactions. These reactive species can affect proteins by the oxidation of their amino acids in a post-translational manner. The hormone abscisic acid regulates major aspects of seed life including dormancy and germination. This signaling pathway has been shown to rely on several PTMs such as protein phosphorylation or ubiquitination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call