Abstract

Melatonin has been reported to improve nonalcoholic fatty liver disease (NAFLD), and exploring the underlying mechanisms will be beneficial for better treatment of NAFLD. Choline-deficient high-fat diet (CDHFD)- and methionine/choline-deficient diet (MCD)-fed mice with melatonin intervention exhibit significantly decreased liver steatosis, lobular inflammation, and focal liver necrosis. Single-cell RNA sequencing reveals that melatonin selectively inhibits pro-inflammatory CCR3+ monocyte-derived macrophages (MoMFs) and upregulates anti-inflammatory CD206+ MoMFs in NAFLD mice. Liver-infiltrating CCR3+CD14+ MoMFs are also significantly increased in patients with NAFLD. Mechanistically, melatonin receptor-independent BTG2-ATF4 signaling plays a role in the regulation of CCR3+ MoMF endoplasmic reticulum stress, survival, and inflammation. In contrast, melatonin upregulates CD206+ MoMF survival and polarization via MT1/2 receptors. Melatonin stimulation also regulates human CCR3+ MoMF and CD206+ MoMF survival and inflammation invitro. Furthermore, CCR3 depletion antibody monotherapy inhibits liver inflammation and improves NAFLD in mice. Thus, therapies targeting CCR3+ MoMFs may have potential benefits in NAFLD treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.