Abstract
Metallabenzenes are a class of molecules in which a CH unit in benzene is replaced by a functionalized transition-metal atom. While all-boron analogues of aromatic and antiaromatic hydrocarbons are well-known, there have not been any metallaboron analogs. We have produced and investigated two metal-doped boron clusters, ReB6- and AlB6-, using high-resolution photoelectron imaging and quantum chemical calculations. Vibrationally resolved photoelectron spectra have been obtained and compared with the theoretical results. The ReB6- cluster is found to be perfectly planar with a B-centered hexagonal structure (C2v, 1A1), while AlB6- is known to have a similar structure, but with a slightly out-of-plane distortion (Cs, 1A'). Chemical bonding analyses show that the closed-shell ReB6- is doubly σ- and π-aromatic, while AlB6- is known to be σ-aromatic and π-antiaromatic. The out-of-plane distortion in AlB6- is due to antiaromaticity, akin to the out-of-plane distortion of the prototypical antiaromatic cyclooctatetraene. The π-bonding in ReB6- is compared with that in both benzene and rhenabenzene [(CO)4ReC5H5], and remarkable similarities are found. Hence, ReB6- can be viewed as the first metallaboron analog of metallabenzenes and it may be viable for syntheses with suitable ligands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.