Abstract
ReaxFF molecular dynamics (ReaxFF MD) simulations were performed to study the thermal decomposition property of cyclotrimethylenetrinitramine (RDX)-based composite modified double base (CMDB) propellants. The intermediate products and final products of the decomposition of RDX-based CMDB propellants at 2000K, 2500K, and 3000K are obtained. The simulation results show that the decomposition of RDX and RDX/HTPB/Al is primary triggered by N-NO2 rupture, and then, the intermedia products undergo a series of complex interactions to form final products. The final products of RDX/HTPB/Al are H2 and N2, while the final products of pure RDX are H2, N2, and H2O. In addition, the abundance of the main intermediate products generated by RDX/HTPB/Al is lower than that of RDX, in that the reaction between intermediate products is more complex for RDX/HTPB/Al. Moreover, the decomposition rate of RDX/HTPB/Al increases with the increasing temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.