Abstract

The recombinant 40 kDa BoExXyl43A glycoside hydrolase family 43 (GH43) from bacterium Bacteroides ovatus exhibited highest specific activity (U/mg) against corn cob xylan (136.8), followed by Beechwood xylan (81.1), Carbosynth xylan (69.3), 4-O-D-methylglucuronoxylan (61.4) and Birchwood xylan (59.9). BoExXyl43A demonstrated optimal performance at 37 °C and pH 7.6 with Vmax and Km of 141.8 U/mg and 4.0 mg/mL as well as 64.1 U/mg and 6.0 mg/mL against corn cob and Birchwood xylan, respectively. The activity of BoExXyl43A increased by 48 % by addition of 10 mM Ca2+ ions, while 1 mM EDTA or 1 mM EGTA decreased its activity by 100 % or 42.5 %, respectively, highlighting its calcium-ion dependence. Thin-layer chromatography (TLC) analysis of BoExXyl43A hydrolysates of Birchwood and Beechwood xylan as well as that of various xylooligosaccharides (DP2-DP9) from corn cob xylan showed the release of D-xylose, identifying it as an exo-β-1,4-xylosidase/exo-β-1,4-xylanase (EC 3.2.1.-/3.2.1.37). Moreover, the time-dependent TLC analysis of xylobiose hydrolysis showed release of D-xylose units, confirming its β-xylosidase activity. BoExXyl43A also exhibited exo-1,4-β-xylosidase activity on Larchwood and Carbosynth xylans. Notably, it released D-xylose from α-L-Araf2-xylotriose demonstrating its activity against decorated xylooligosaccharides. BoExXyl43A's exo-1,4-β-xylosidase and residual β-xylosidase activity on xylan and xylobiose, respectively, could potentially enhance xylan saccharification efficiency in bioethanol-based refineries. The molecular modeling showed that BoExXyl43A has 5-bladed β-propeller structure with a very shallow active-site having −1, +1 and + 2 subsites, which could accommodate three D-xylose units of longer xylan like xylododecaose thus supporting its exoxylosidase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.