Abstract

The electron-density distribution in Cu2O has been critically reexamined to test controversial conclusions from earlier experimental and theoretical studies. The electron density is derived via multipole refinement of high-quality single-crystal diffraction data, collected at room temperature with 316.5 keV gamma radiation. Four γ-lines in the energy range 200-600 keV have been used to extrapolate extinction-free low-order structure factors. The remaining extinction corrections refine to a crystal mosaicity identical to the observed one. There is no support for anharmonic contributions to the thermal parameters. Important features of the derived electron density are (i) a partially filled d_{z^2} orbital, (ii) an incomplete ionization of Cu and O, and (iii) no interstitial Cu-Cu charge pileup, thereby refuting the covalent bonding hypothesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call