Abstract

This paper examines the evolution of closing the Reynolds-averaged Navier–Stokes equations by approximating the Reynolds stresses via the second-moment transport equations themselves. This strategy first proposed by Rotta is markedly in contrast to the more usual approach of computing an effective “turbulent viscosity” to deduce the turbulent stresses as in a Newtonian fluid in laminar motion. This paper covers the main elements in the development of this approach and shows examples of applications in complex shear flows that collectively include the effects of three-dimensional straining, force fields, and time dependence that affect the flow evolution in ways that cannot be readily mimicked with an eddy viscosity model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.