Abstract

Previous in-situ stress studies across many of Australia’s petroleum basins demonstrate normal fault and strike-slip fault stress regimes, despite the sedimentary successions demonstrating evidence for widespread Miocene-to-Recent reverse faulting. Seismic and outcrop data demonstrate late Miocene-to-Recent reverse or reverse-oblique faulting in the Otway and Gippsland basins. In the Otway Basin, a series of approximately northeast to southwest trending anticlines related to reverse-reactivation of deep syn-rift normal faults, resulting in the deformation of Cenozoic post-rift sediments are observed. Numerous examples of late Miocene-to-Recent reverse faulting in the offshore Gippsland Basin have also been observed, with contractional reactivation of previously normal faults during these times partially responsible for the formation of anticlinal hydrocarbon traps that host the Barracouta, Seahorse and Flying Fish hydrocarbon fields, adjacent to the Rosedale Fault System. A new method for interpreting leak-off test data demonstrates that the in-situ stress data from parts of the Otway and Gippsland basins can be reinterpreted to yield reverse fault stress regimes, consistent with the present-day tectonic setting of the basins. This reinterpretation has significant implications for petroleum exploration and development in the basins. In the Otway and Gippsland basins, wells drilled parallel to the orientation of the maximum horizontal stress (σH) represent the safest drilling directions for both borehole stability and fluid losses. Faults and fractures, striking northeast to southwest, previously believed to be at low risk of reactivation in a normal fault or strike-slip fault stress regime are now considered to be at high risk in the reinterpreted reverse fault stress regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.