Abstract

The combination of alkyne and halogen functional groups in the same molecule allows for the possibility of many different reactions when utilized in on-surface synthesis. Here, we use a pyrene-based precursor with both functionalities to examine the preferential reaction pathway when it is heated on an Au(111) surface. Using high-resolution bond-resolving scanning tunneling microscopy, we identify multiple stable intermediates along the prevailing reaction pathway that initiate with a clearly dominant Glaser coupling, together with a multitude of other side products. Importantly, control experiments with reactants lacking the halogen functionalization reveal the Glaser coupling to be absent and instead show the prevalence of non-dehydrogenative head-to-head alkyne coupling. We perform scanning tunneling spectroscopy on a rich variety of the product structures obtained in these experiments, providing key insights into the strong dependence of their HOMO–LUMO gaps on the nature of the intramolecular coupling. A clear trend is found of a decreasing gap that is correlated with the conversion of triple bonds to double bonds via hydrogenation and to higher levels of cyclization, particularly with nonbenzenoid product structures. We rationalize each of the studied cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.