Abstract
ABSTRACT‘ expressionist’ accounts of applied mathematics seek to avoid the apparent Platonistic commitments of our scientific theories by holding that we ought only to believe their mathematics-free nominalistic content. The notion of ‘nominalistic content’ is, however, notoriously slippery. Yablo's account of non-catastrophic presupposition failure offers a way of pinning down this notion. However, I argue, its reliance on possible worlds machinery begs key questions against Platonism. I propose instead that abstract expressionists follow Geoffrey Hellman's lead in taking the assertoric content of empirical science to be irreducibly modal, using the ‘non-interference’ of mathematical objects as justification for detaching nominalistic consequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.