Abstract

Cross-modal analysis has become a promising direction for artificial intelligence. Visual representation is crucial for various cross-modal analysis tasks that require visual content understanding. Visual features which contain semantical information can disentangle the underlying correlation between different modalities, thus benefiting the downstream tasks. In this paper, we propose a Visual Reasoning and Attention Network (VRANet) as a plug-and-play module to capture rich visual semantics and help to enhance the visual representation for improving cross-modal analysis. Our proposed VRANet is built based on the bilinear visual attention module which identifies the critical objects. We propose a novel Visual Relational Reasoning (VRR) module to reason about pair-wise and inner-group visual relationships among objects guided by the textual information. The two modules enhance the visual features at both relation level and object level. We demonstrate the effectiveness of the proposed VRANet by applying it to both Visual Question Answering (VQA) and Cross-Modal Information Retrieval (CMIR) tasks. Extensive experiments conducted on VQA 2.0, CLEVR, CMPlaces, and MS-COCO datasets indicate superior performance comparing with state-of-the-art work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.