Abstract

Influenza A virus (IAV) occasionally cross-species transmission among humans, swine and avian. The ectodomain of matrix protein 2 (M2e) is highly conserved in IAV, and multi-copy M2e from different species are usually displayed on the surface of nanoparticles to improve immunogenicity and constitute universal IAV nanovaccines. In our previous study, three M2e were inserted into the C-terminal of Cap protein of porcine circovirus type 2 (PCV2) to form a universal nanovaccine that provides protection against PCV2 and different subtypes of IAV. However, M2e adopts at least two converted conformations, and the intermolecular linker of M2e enhances the conformational instability, which limits the recognition by B cell receptors and production of high-level antibodies. Here, we report that the permutation of M2e affects effectiveness of nanovaccines. Three M2e derived from humans, swine and avian IAV were inserted into the C-terminal of Cap protein to form nanovaccines. Immunoprotective effects of different M2e arrangements were explored in mice. Results showed that the M2e closest to the surface of nanoparticle induced the most efficient protection against IAV derived from corresponding species. The results will contribute to develop more effective PCV2 and universal IAV bivalent nanovaccines for pigs, as well as species-specific universal IAV vaccines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.