Abstract

A close relationship has been observed between the growth and development of kiwi fruit and the pollination of the kiwi flower. Flower overlap, flower tilt, and other problems will affect this plant’s pollination success rate. A pollination model based on YOLOv5 was developed to improve the pollination of kiwi flowers. The K-means++ clustering method was used to cluster the anchors closer to the target size, which improved the speed of the algorithm. A convolutional block module attention mechanism was incorporated to improve the extraction accuracy with respect to kiwi flower features and effectively reduce the missed detection and error rates. The optimization of the detection function improves the recognition of flower overlap and the accuracy of flower tilt angle calculation and accurately determines flower coordinates, pollination point coordinates, and pollination angles. The experimental results show that the predicted value of the YOLOv5s model is 96.7% and that its recognition accuracy is the highest. Its mean average precision value is up to 89.1%, its F1 score ratio is 90.12%, and its memory requirements are the smallest (only 20 MB). The YOLOv5s model achieved the highest recognition accuracy as determined through a comparison experiment of the four sets of analysed models, thereby demonstrating its ability to facilitate the efficient target pollination of kiwi flowers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.