Abstract

The indole prenyltransferases are a family of metal-independent enzymes that catalyze the transfer of a prenyl group from dimethylallyl diphosphate (DMAPP) onto the indole ring of a tryptophan residue. These enzymes are remarkable in their ability to direct the prenyl group in either a “normal” or “reverse” fashion to positions with markedly different nucleophilicity. The enzyme 4-dimethylallyltryptophan synthase (4-DMATS) prenylates the non-nucleophilic C-4 position of the indole ring in free tryptophan. Evidence is presented in support of a mechanism that involves initial ion pair formation followed by a reverse prenylation at the nucleophilic C-3 position. A Cope rearrangement then generates the C-4 normal prenylated intermediate and deprotonation rearomatizes the indole ring. The enzyme tryprostatin B synthase (FtmPT1) catalyzes the normal C-2 prenylation of the indole ring in brevianamide F (cyclo-L-Trp-L-Pro). It shares high structural homology with 4-DMATS, and evidence is presented in favor of an initial C-3 prenylation (either normal or reverse) followed by carbocation rearrangements to give product. The concept of a common intermediate that partitions to different products via rearrangements can help to explain how these evolutionarily related enzymes can prenylate different positions on the indole ring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.