Abstract

Cf resistance genes in tomato confer resistance to the fungal leaf pathogen Cladosporium fulvum. Both the well-characterized resistance gene Cf-9 and the related 9DC gene confer resistance to strains of C. fulvum that secrete the Avr9 protein and originate from the wild tomato species Lycopersicon pimpinellifolium. We show that 9DC and Cf-9 are allelic, and we have isolated and sequenced the complete 9DC cluster of L. pimpinellifolium LA1301. This 9DC cluster harbors five full-length Cf homologs, including orthologs of the most distal homologs of the Cf-9 cluster and three central 9DC genes. Two 9DC genes (9DC1 and 9DC2) have an identical coding sequence, whereas 9DC3 differs at its 3' terminus. From a detailed comparison of the 9DC and Cf-9 clusters, we conclude that the Cf-9 and Hcr9-9D genes from the Cf-9 cluster are ancestral to the first 9DC gene and that the three 9DC genes were generated by subsequent intra- and intergenic unequal recombination events. Thus, the 9DC cluster has undergone substantial rearrangements in the central region, but not at the ends. Using transient transformation assays, we show that all three 9DC genes confer Avr9 responsiveness, but that 9DC2 is likely the main determinant of Avr9 recognition in LA1301.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call