Abstract
For a general set transformation R between two measure spaces, we define the rearrangement of a measurable function by means of the Layer's cake formula. We study some functional properties of the Lorentz spaces defined in terms of R, giving a unified approach to the classical rearrangement, Steiner's symmetrization, the multidimensional case, and the discrete setting of trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.