Abstract

The detailed mass spectrum of isobutene has been examined using both D and 13C labelling. It is shown that at low average internal energies of the molecular ion complete randomization of hydrogens and of carbons occurs prior to fragmentation to form C3H5+. As the average internal energy of the molecular ion increases (by increasing the ionizing electron energy) the extent of both carbon and hydrogen randomization decreases. Carbon scrambling is complete in the molecular ion prior to fragmentation to form C2 ions under all conditions studied. The results are consistent with a skeletal isomerization of the isobutene molecular ion by a mechanism involving a series of 1,3 ring closures to form methylcyclopropane type ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.