Abstract

Phospholamban (PLB) is a major target of the beta-adrenergic cascade in the heart, and functions to modulate rate-limiting conformational transitions involving the transport activity of the Ca-ATPase. To investigate structural changes within the Ca-ATPase that result from the phosphorylation of PLB by cAMP-dependent protein kinase (PKA), we have covalently bound the long-lived phosphorescent probe erythrosin isothiocyanate (Er-ITC) to cytoplasmic sequences within the Ca-ATPase. Under these labeling conditions, the Ca-ATPase remains catalytically active, indicating that observed changes in rotational dynamics reflect normal conformational transitions. Two major Er-ITC labeling sites were identified using electrospray ionization mass spectrometry (ESI-MS), corresponding to Lys464 and Lys650, which are respectively located within the phosphorylation and nucleotide binding domains of the Ca-ATPase. Frequency-domain phosphorescence measurements of the rotational dynamics of Er-ITC bound to these cytoplasmic sequences within the Ca-ATPase permit the resolution of the dynamic structure of individual domain elements relative to the overall rotational motion of the entire Ca-ATPase polypeptide chain. We observe a significant decrease in the rotational dynamics of Er-ITC bound to the Ca-ATPase upon phosphorylation of PLB by PKA, as evidenced by an increase in the residual anisotropy. These results suggest that phosphorylation of PLB results in a structural reorientation of the phosphorylation or nucleotide binding domains with respect to the membrane normal. In contrast, calcium activation of the Ca-ATPase in the presence of dephosphorylated PLB results in no detectable change in the rotational dynamics of Er-ITC, suggesting that calcium binding and PLB phosphorylation have distinct effects on the conformation of the Ca-ATPase. We suggest that PLB functions to alter the efficiency of phosphoenyzme formation following calcium activation of the Ca-ATPase by modulating the spatial arrangement between ATP bound in the nucleotide binding domain and Asp351 in the phosphorylation domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.