Abstract

Elastic optical networks (EONs) have been introduced to meet the demands of the rapidly growing Internet. These networks can efficiently keep up with the emerging bandwidth-hungry and highly dynamic services, and can support multicast services using techniques like the path, tree or subtree methods. A multicast wavelength-space-wavelength (M-WSW) network is a switching node architecture for EONs, which adopts the subtree method to support multicast connections. An M-WSW network consists of three node stages in which wavelength, space and wavelength switches are used, respectively. A nonblocking M-WSW network guarantees that any connection between a free input and a free output can always be realized, and studying the nonblockingness of a network has attracted much attention from researchers. Sufficient conditions, in terms of the number of middle space switches, for an M-WSW network to be strict-sense nonblocking (SNB) or wide-sense nonblocking (WSNB) were examined in an earlier study. It is known that SNB networks usually incur a higher hardware cost, for instance, the number of middle space switches, compared to WSNB, rearrangeably nonblocking (RNB), or repackably nonblocking (RPNB) networks. This paper studies the rearrangeability and repackability of M-WSW networks, and derives the sufficient and necessary conditions for an M-WSW network to be RNB (or RPNB). The results show that the derived sufficient conditions for being RNB (or RPNB) require significantly fewer middle switches for SNB and WSNB networks, and the RPNB results require fewer middle switches than those for RNB in most cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.