Abstract
Multiplatform observations of ocean biogeochemical data were used to elucidate meridional differences in the factors that limit phytoplankton biomass (Chl-a) and the mechanisms that trigger the seasonal winter or spring phytoplankton bloom in the northwestern Pacific Ocean (NWPO). During the winter, Chl-a north (south) of 30°N is limited by light (nutrients). During the spring and fall, Chl-a in much of the area east of the Japan/Kuril Islands and/or north of 40°N (south of 35°N) is limited by light (nutrients). During the summer, nutrients limit Chl-a over much of the NWPO, except in the areas east of the Japan/Kuril Islands and north of 45°N. In the area south of around 31°N, phytoplankton biomass is nutrient limited throughout the year, and the seasonal bloom emerges in the winter, begins in the fall which is associated with mixed layer deepening. Between 31°N and 40°N, the spring bloom onset is mainly associated with a cessation of mixed layer deepening. In much of the area north of 40°N, including the Oyashio area, the onset of the spring bloom is consistent with Sverdrup’s critical depth hypothesis. The spatial extents of the light- and nutrient-limited areas and the areas associated with a single bloom onset mechanism are by no means constant. They are expected to undergo meridional shifts as a result of large-scale climatic changes and global warming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.