Abstract
To evaluate the temporal mechanisms that give rise to the spontaneous proestrous surge of luteinizing hormone (LH) in the rat, we have applied deconvolution analysis to earlier immunoreactive LH concentration vs. time profiles obtained by sampling blood in proestrus at 2- to 3-min intervals in 10 animals over a span of 160-300 min. Six other animals were bled in 6-min intervals on day 1 of diestrus. Deconvolution analysis permitted us to calculate the number, duration, amplitude (maximal release rates), and mass of underlying LH secretory bursts and to simultaneously estimate basal secretion and the half-life of endogenous LH in each animal. Proestrus rats exhibited a significant increase in the number of computer-identified LH secretory bursts per hour (1.8 +/- 0.2 vs. 1.1 +/- 0.01 on diestrus, P < 0.01), with a corresponding reduction in the LH intersecretory burst interval from 61 +/- 6.4 min (diestrus) to 25 +/- 2.7 min (proestrus, P < 0.01). There was a remarkable 16-fold increase in the mass of LH secreted per burst, which rose from 72 +/- 5.2 to 1,230 +/- 200 ng/ml (P < 0.01). This resulted from a sixfold increase in LH secretory burst amplitude and a doubling of burst duration. The total amount of LH released in a burstlike fashion during the proestrous LH surge rose 20-fold, and calculated basal LH secretion increased to approximately 25% of this value. Of interest, the computed half-life of endogenous LH also increased from 10 +/- 1.1 to 19 +/- 3.7 min (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.