Abstract

This tutorial paper describes the methods for constructing fast algorithms for the computation of the discrete Fourier transform (DFT) of a real-valued series. The application of these ideas to all the major fast Fourier transform (FFT) algorithms is discussed, and the various algorithms are compared. We present a new implementation of the real-valued split-radix FFT, an algorithm that uses fewer operations than any other real-valued power-of-2-length FFT. We also compare the performance of inherently real-valued transform algorithms such as the fast Hartley transform (FHT) and the fast cosine transform (FCT) to real-valued FFT algorithms for the computation of power spectra and cyclic convolutions. Comparisons of these techniques reveal that the alternative techniques always require more additions than a method based on a real-valued FFT algorithm and result in computer code of equal or greater length and complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.