Abstract
Variable temperature tapping mode atomic force microscopy is exploited to in situ visualize the morphological evolution of N, N'-di(naphthalene-1-yl)-N, N'-diphthalbenzidine (NPB) thin film. The apparent glass transition of the NPB thin film initially occurred at 60°C, proceeded until 95°C, and crystallization from the glassy state quickly appeared at 135°C. The NPB thin film gradually melted and disappeared when the temperature was above 175°C, revealing the underlying layer. These observations are technically helpful and significant to gauge the temperature dependent lifetime and luminance of organic light-emitting diodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.