Abstract
ABSTRACT This study addresses the challenging real-time vehicle relocation and staff rebalancing (RT-VR&SR) problem in electric carsharing services. The complexity arises from ad-hoc demand, charging requirements of electric vehicles (EVs), and staff scheduling constraints. The problem aims to maximize the profit of carsharing operators by determining strategies for vehicle relocation, vehicle charging, and staff rebalancing in real-time. It considers the uncertainty of demand and the practical nonlinear charging profile of EVs. We formulate this problem as a Markov Decision Process (MDP), and propose an efficient concurrent-scheduler-based policy. Numerical experiments are conducted to demonstrate the effectiveness of the proposed policy and methodology. The results show that the proposed policy significantly improves service level and profitability compared to a benchmark policy. It is also found that ignoring staff rebalancing in decision making can lead to overestimation of service level and profitability. In conclusion, this study presents a real-time solution for vehicle relocation and staff rebalancing in one-way electric carsharing services. The proposed policy and methodology improve performance and highlight the importance of considering staff rebalancing in decision making.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.