Abstract

In this paper, we proposed a real-time automated vehicle color recognition method using you look only once (YOLO)9000 object detection for intelligent transportation system applications in smart city. The workflow in our method contains only one step which achieves recognize vehicle colors from original images. The model proposed is trained and fine tuned for vehicle localization and color recognition so that it can be robust under different conditions (e.g., variations in background and lighting). Targeting a more realistic scenario, we introduce a dataset, called VDCR dataset, which collected on access surveillance. This dataset is comprised up of 5216 original images which include ten common colors of vehicles (white, black, red, blue, gray, golden, brown, green, yellow, and orange). In our proposed dataset, our method achieved the recognition rate of 95.47% and test-time for one image is 74.46 ms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.