Abstract

Loop-mediated isothermal amplification (LAMP) is a nucleic acid amplification method that allows the synthesis of large amounts of DNA in a short period of time with high specificity. As the LAMP reaction progresses, the reaction by-product pyrophosphate ions bind to magnesium ions and form a white precipitate of magnesium pyrophosphate. We designed an apparatus capable of measuring the turbidity of multiple samples simultaneously while maintaining constant temperature to conduct real-time measurements of the changes in the turbidity of LAMP reactions. The time (Tt) required for the turbidity of the LAMP reaction solution to exceed a given value was dependent on the quantity of the initial template DNA. That is, a graph with the plot of Tt versus the log of the amount of initial template DNA was linear from 2×103 copies (0.01 pg/tube) to 2×109 copies (100 ng/tube) of template DNA. These results indicate that real-time turbidity measurements of the LAMP reaction permit the quantitative analysis of minute amounts of nucleic acids present in a sample, with a high precision over a wide range, using a simple apparatus reported in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.