Abstract

Paleotsunami studies have shown that several large tsunamis hit the Pacific coast. Many tsunami deposit data were available for the 17thcentury tsunami. The most recent tsunami deposit study in 2013 indicated that the large slip of about 25 m along the plate interface near the Kurile trench would be necessary and the seismic moment of this 17thcentury earthquake was 1.7 × 1022Nm. If a great earthquake like the 17thcentury earthquake occurs off the Pacific coast of Hokkaido, the devastating disaster along the coast is expected. To minimize the tsunami disaster, a development of the real-time forecast of a tsunami inundation area is necessary. Estimating a tsunami inundation area requires tsunami numerical simulation with a very fine grid system of less than 1 arcsecond. There is not enough time to compute the tsunami inundation area after a large earthquake occurs. In this study, we develop a real-time tsunami inundation forecast method using a database including many tsunami inundation areas previously computed using various fault models. After great earthquakes, tsunamis are computed using linear long-wave equations for fault models estimated in real time. Simulating such tsunamis takes only 1-3 minutes on a typical PC, so it is potentially useful for forecasting tsunamis. Tsunami inundation areas computed numerically using various fault models and tsunami waveforms at several locations near the inundation area are stored in a database. Those computed tsunami waveforms are used to choose the most appropriate tsunami inundation area by comparing them to the tsunami waveforms computed in real time. This method is tested at Kushiro, a city in Hokkaido. We found that the method worked well enough to forecast the Kushiro’s tsunami inundation area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call