Abstract
Real-time transient stability status prediction (RTSSP) is very important to maintain the safety and stability of electrical power systems, where any unstable contingency will be likely to cause large-scale blackout. Most of machine learning methods used for RTSSP attempt to attain a low classification error, which implies that the misclassification costs of different categories are the same. However, misclassifying an unstable case as stable one usually leads to much higher costs than misclassifying a stable case as unstable one. In this paper, a new RTSSP method based on cost-sensitive extreme learning machine (CELM) is proposed, which recognizes the RTSSP as a cost-sensitive classification problem. The CELM is constructed pursuing the minimum misclassification costs, and its detailed implementation procedures for RSSTP are also researched in this work. The proposed method is implemented on the New England 39-bus electrical power system. Compared with three cost-blind methods (ELM, SVM and DT) and two cost-sensitive methods (cost-sensitive DT, cost-sensitive SVM), the simulation results have proved that the lower total misclassification costs and false dismissal rate with low computational complexity can be achieved by the proposed method, which meets the demands for the computation speed and the reliability of RTSSP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.