Abstract

The real-time reentry trajectory and attitude coordination control for a reusable launch vehicle (RLV) is a very important and challenging problem. There are many aspects that make the research appealing, such as being able to autonomously replan a new trajectory onboard when the landing site is changed. In order to achieve the goal, an integrated guidance and control architecture is proposed in this paper. First, the offline reentry trajectory is designed based on adaptive Gauss pseudospectral method. Then, the obtained trajectory is used as the initial value guess for real-time reentry trajectory optimization. As a result, the pseudospectral-based optimal feedback reentry guidance is achieved via successive real-time optimal open-loop control which ensures that the guidance system has sufficient robustness for initial reentry perturbations. Furthermore, a multitime scale smooth second-order sliding-mode controller with disturbance observer is proposed to ensure the finite-time reentry attitude tracking despite the model parameter uncertainties and unknown external disturbances. Finally, two representative simulation tests are carried out to demonstrate the effectiveness of the proposed integrated guidance and control architecture for six-degree-of-freedom RLV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call