Abstract
Wi-Fi as a wireless networking technology has become a widely acceptable commonplace. Over the course of time, the applications landscape of Wi-Fi networks is growing tremendously. The proliferation of new services is driving the industry to adopt novel and agile approaches to ensure the quality of experience delivered to the end user. To enhance end user experience, transmission throughput is an important metric that has a strong impact on the end-user quality of experience. The accurate real-time prediction of throughput can bring several new possibilities to enhance user experience in future self-organizing cognitive networks. However the real-time prediction of transmission throughput is challenging due to the dependency on several parameters. Previous studies on throughput prediction are primarily focused on non real-time prediction in less-dynamic networks. The studies also do not provide high accuracy as required in cognitive networks for efficient decision making. The purpose of this study is to use data-driven machine learning (ML) techniques and evaluating their accuracy and efficiency to predict the transmission throughput in Wi-Fi networks. Four algorithms are used namely multi-layer perceptrons (MLP), support vector regressors (SVR), decision trees (DT) and random forests (RF). It is widely understood that the accuracy and efficiency of machine learning (ML) algorithms hugely depend upon the datasets being used to train the model. Hence, this study proposes two distinct data models for creating ML-ready datasets using feature engineering. The accuracy of each ML algorithm over these datasets is evaluated. The evaluation results show a maximum prediction accuracy of 96.2% using MLP algorithm, followed by DT (94.5%), RF (93.3%) and SVR (91.0%) respectively. Furthermore, the complexity analysis is also presented to support the adaptation of such schemes in real-time applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.