Abstract

ABSTRACT A real-time subcriticality monitoring system for accelerator-driven system (ADS) is developed at the Kyoto University Critical Assembly (KUCA). The monitoring system consists of a highly sensitive optical fiber-based neutron detector, which combines a large number of small pieces of LiF/Eu:CaF2 eutectic scintillators with a wavelength-shifting fiber, and a digital signal processing system. The fabricated detector is sufficiently small for insertion into slight gaps between the fuel assemblies of the KUCA core and clearly reveals a peak shape indicating neutron signals in the pulse height spectrum. As subcriticality determination procedures, the system employs the Rossi-α, α-fitting, and area ratio methods. The subcriticality experimental results and their related parameters are compared with numerical results. Although the area ratio method slightly underestimates the parameters, overall, the estimated parameters agree well with the calculated ones. Finally, the developed system is found to evaluate the subcriticality within an accuracy of approximately 20% for the effective neutron multiplication factor keff ranges between 0.97 and 0.93, which are used in typical ADS experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call