Abstract

Protein dynamics are essential to biological function, and methods to determine such structural rearrangements constitute a frontier in structural biology. Synchrotron radiation can track real-time protein dynamics, but accessibility to dedicated high-flux single X-ray pulse time-resolved beamlines is scarce and protein targets amendable to such characterization are limited. These limitations can be alleviated by triggering the reaction by laser-induced activation of a caged compound and probing the structural dynamics by fast-readout detectors. In this work, we established time-resolved X-ray solution scattering (TR-XSS) at the CoSAXS beamline at the MAX IV Laboratory synchrotron. Laser-induced activation of caged ATP initiated phosphoryl transfer in the adenylate kinase (AdK) enzyme, and the reaction was monitored up to 50ms with a 2-ms temporal resolution achieved by the detector readout. The time-resolved structural signal of the protein showed minimal radiation damage effects and excellent agreement to data collected by a single X-ray pulse approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.