Abstract

Data streaming has many applications in network monitoring, web services, e-commerce, stock trading, social networks, and distributed sensing. This paper introduces a new problem of real-time burst detection in flow spread, which differs from the traditional problem of burst detection in flow size. It is practically significant with potential applications in cybersecurity, network engineering, and trend identification on the Internet. It is a challenging problem because estimating flow spread requires us to remember all past data items and detecting bursts in real time requires us to minimize spread estimation overhead, which was not the priority in most prior work. This paper provides the first efficient, real-time solution for spread burst detection. It is designed based on a new real-time super spreader identifier, which outperforms the state of the art in terms of both accuracy and processing overhead. The super spreader identifier is in turn based on a new sketch design for real-time spread estimation, which outperforms the best existing sketches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.