Abstract

Measurement of electric charge on the battery in real-time cannot be separated from external noise and disturbances such as temperature and interference. An optimal State of Charge (SoC) estimator model is needed to make the estimation more accurate. To obtain the model, the battery was tested under room temperature conditions and at a temperature of 40oC to obtain a second-order RC model for the Li-Ion battery used. Based on the test data obtained, the data will be tested first using the Kalman Filter method to get an estimate of the State of Charge (SoC). Tests were carried out using MATLAB software. After the method was tested, the online SoC Estimator design began using the Raspberry Pi Single Board Computer (SBC). After that, the estimator will be tested first using data from offline measurements and then used in real-time (online) SoC estimation measurements. The Voc before the battery discharge test was 13.16 V and after the test, the measured Voc was 11.58 V. During the discharge the Voc was reduced by 1.58 V. While the discharge data from the battery manufacturer showed the reduced Voc during the discharge was 1.2V.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.