Abstract

Rat spinal cord contusion injury models the histopathology associated with much clinical spinal cord injury (SCI). Studies on altered gene expression after SCI in these models may identify therapeutic targets for reducing secondary injury after the initial trauma and/or enhancing recovery processes. However, complex spatial and temporal alterations after injury could complicate interpretation of changes in gene expression. To test this hypothesis, we selected six genes and studied their temporal and spatial patterns of expression at 1 h, 1, 3 and 7 days after a standardized spinal cord contusion produced by a weight drop device (10 g x 25 mm at T8). Real-time RT-PCR using TaqMan probes was employed to quantify mRNA for proteolipid protein, glyceraldehyde-3-phosphate dehydrogenase, glial fibrillary acidic protein, nestin, and the GluR2 and NR1 subunits of glutamate receptors. We found widely different temporal and spatial patterns of altered gene expression after SCI, including instances of opposing up- and down-regulation at different locations in tissue immediately adjacent to the injury site. We conclude that greater use of the reliable and extremely sensitive technique of quantitative real-time PCR for regional tissue analysis is important for understanding the altered gene expression that occurs after CNS trauma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.