Abstract
Expansin has nonhydrolytic disruptive activity and synergistically acts with cellulases to enhance the hydrolysis of cellulose. The adsorption-desorption of expansin on noncellulosic lignin can greatly affect the action of expansin on lignocellulose. In this study, three lignins with different sources (kraft lignin (KL), sodium lignin sulfonate (SLS), and enzymatic hydrolysis lignin (EHL)) were selected as the substrates. The real-time adsorption-desorption of Bacillus subtilis expansin (BsEXLX1) on lignins was monitored using quartz crystal microgravimetry with dissipation (QCM-D). The effects of temperature and Tween 80 on the adsorption-desorption behaviors were also investigated. The results show that BsEXLX1 exhibited high binding ability on lignin and achieved maximum adsorption of 283.2, 273.8, and 266.9 ng cm-2 at 25 °C on KL, SLS, and EHL, respectively. The maximum adsorption decreased to 148.2-192.8 ng cm-2 when the temperature increased from 25 to 45 °C. Moreover, Tween 80 competitively bound to lignin and significantly prevented expansin adsorption. After irreversible adsorption of Tween 80, the maximum adsorption of BsEXLX1 greatly decreased to 33.3, 37.2, and 10.3 ng cm-2 at 25 °C on KL, SLS, and EHL, respectively. Finally, a kinetic model was developed to analyze the adsorption-desorption process of BsEXLX1. BsEXLX1 has a higher adsorption rate constant (kA) and a lower desorption rate constant (kD) on KL than on SLS and EHL. The findings of this study provide useful insights into the adsorption-desorption of expansin on lignin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.