Abstract
AbstractIn this paper, we focus on the real-time interactions among multiple utility companies and multiple users and formulate real-time pricing (RTP) as a two-stage optimization problem. At the first stage, based on cost function, we propose a continuous supply function bidding mechanism to model the utility companies’ profit maximization problem, by which the analytic expression of electricity price is further derived. At the second stage, considering that individually optimal solution may not be socially optimal, we employ convex optimization with linear constraints to model the price anticipating users’ daily payoff maximum. Substitute the analytic expression of electricity price obtained at the first stage into the optimization problem at the second stage. Using customized proximal point algorithm (C-PPA), the optimization problem at the second stage is solved and electricity price is obtained accordingly. We also prove the existence and uniqueness of the Nash equilibrium in the mentioned two-stage optimization and the convergence of C-PPA. In addition, in order to make the algorithm more practical, a statistical approach is used to obtain the function of price only through online information exchange, instead of solving it directly. The proposed approach offers RTP, power production and load scheduling for multiple utility companies and multiple users in smart grid. Statistical approach helps to protect the company’s privacy and avoid the interference of random factors, and C-PPA has an advantage over Lagrangian algorithm because the former need not obtain the objection function of the dual optimization problem by solving an optimization problem with parameters. Simulation results show that the proposed framework can significantly reduce peak time loading and efficiently balance system energy distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.