Abstract

PurposeKnowledge of medical radiation exposure permits application of radiation protection principles. In our center, the first dedicated real-time, automated patient and staff dose monitoring system (DoseWise Portal, Philips Healthcare) was installed. Aim of this study was to obtain insight in the procedural and occupational doses.Materials and MethodsAll interventional radiologists, vascular surgeons, and technicians wore personal dose meters (PDMs, DoseAware, Philips Healthcare). The dose monitoring system simultaneously registered for each procedure dose-related data as the dose area product (DAP) and effective staff dose (E) from PDMs. Use and type of shielding were recorded separately. All procedures were analyzed according to procedure type; these included among others cerebral interventions (n = 112), iliac and/or caval venous recanalization procedures (n = 68), endovascular aortic repair procedures (n = 63), biliary duct interventions (n = 58), and percutaneous gastrostomy procedure (n = 28).ResultsMedian (±IQR) DAP doses ranged from 2.0 (0.8–3.1) (percutaneous gastrostomy) to 84 (53–147) Gy cm2 (aortic repair procedures). Median (±IQR) first operator doses ranged from 1.6 (1.1–5.0) μSv to 33.4 (12.1–125.0) for these procedures, respectively. The relative exposure, determined as first operator dose normalized to procedural DAP, ranged from 1.9 in biliary interventions to 0.1 μSv/Gy cm2 in cerebral interventions, indicating large variation in staff dose per unit DAP among the procedure types.ConclusionReal-time dose monitoring was able to identify the types of interventions with either an absolute or relatively high staff dose, and may allow for specific optimization of radiation protection.

Highlights

  • The number and complexity of vascular and non-vascular fluoroscopy-guided interventions continuously increased and have led to an increased radiation exposure for interventional radiologists, surgeons, and supporting medical staff members [1,2,3,4]

  • Procedural dose was strongly driven by both, fluoroscopy and DSA, whereas fluoroscopy was the main contributor to first operator (FO) dose for all procedure types, thereby indicating that in most cases, the staff left the angio-suite or kept large distance to the C-arm during the acquisition of DSA

  • While patient dose is justified by medical indication, radiation exposure for healthcare professionals has to be monitored carefully due to its repetitive character and potential longterm effects

Read more

Summary

Introduction

The number and complexity of vascular and non-vascular fluoroscopy-guided interventions continuously increased and have led to an increased radiation exposure for interventional radiologists, surgeons, and supporting medical staff members [1,2,3,4]. Radiation safety in fluoroscopy-guided interventions is crucial for patient care quality assurance as well as for occupational safety. Levels of procedural radiation exposure are affected by multiple factors and many are beyond operator control, e.g., the type and complexity of the performed procedure or the dimensions of the patient within the X-ray field of view. Other factors can be at least partially controlled, such as the position of the medical staff relative to the patient, the X-ray equipment and acquisition technique (fluoroscopy, digital subtraction angiography (DSA), roadmap, or 3D), and the radiation protection tools used. Detailed knowledge of the radiation exposure during specific fluoroscopy-guided procedures, thereby optimizing the layout of the angio-suites, should be an integral part of the development of X-ray systems and interventional techniques in order to reduce exposure for both staff and patients [6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call