Abstract
Periodic wake-foil interactions occur in the collective swimming of bio-inspired robots. Wake interaction pattern estimation (and control) is crucial to thrust enhancement and propulsive efficiency optimization. In this paper, we study the wake interaction pattern estimation of two flapping foils in tandem configurations. The experiments are conducted at a Reynolds number of 1.41 × 104 in a water channel. A modified wake-foil phase parameter Φ, which unifies the influences of inter-foil distance L x , motion phase difference Δφ and wake convection velocity U v , is introduced to describe the wake interaction patterns parametrically. We use a differential pressure sensor on the downstream foil to capture wake interaction characteristics. Data sets at different tandem configurations are collected. The wake-foil phase Φ is used to label the pressure signals. A one-dimensional convolutional neural networks (1D-CNN) model is used to learn an end-to-end mapping between the raw pressure measurements and the wake-foil phase Φ. The trained 1D-CNN model shows accurate estimations (average error 3.5%) on random wake interaction patterns and is fast enough (within 40 ms). Then the trained 1D-CNN model is applied to online thrust enhancement control of a downstream foil swimming in a periodic wake. Synchronous force monitoring and flow visualization demonstrate the effectiveness of the 1D-CNN model. The limitations of the model are discussed. The proposed approach can be applied to the online estimation and control of wake interactions in the collective swimming and flying of biomimetic robots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.