Abstract

This paper presents a real-time energy optimization algorithm for a hybrid electric vehicle (HEV) that operates with adaptive cruise control (ACC). Real-time energy optimization is an essential issue such that the HEV powertrain system is as efficient as possible. With connected vehicle technique, ACC system shows considerable potential of high energy efficiency. Combining a classical ACC algorithm, a two-level cooperative control scheme is constructed to realize real-time power distribution for the host HEV that operates in a vehicle platoon. The proposed control strategy actually provides a solution for an optimal control problem with multi objectives in terms of string stable of vehicle platoon and energy consumption minimization of the individual following vehicle. The string stability and the real-time optimization performance of the cooperative control system are confirmed by simulations with respect to several operating scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.