Abstract

The growing disparity between food supply and demand requires innovative Digital Agriculture (DA) systems to increase farm sustainability and profitability. However, current systems suffer from problems of complexity stemming from the challenge of integrating diverse, often non-interoperable hardware and software components. In order to tackle these complexities to increase farm efficiency and understand the tradeoffs of these new DA innovations we developed Realtime Optimization and Management System (ROAM), which is a decision-support system developed to find a Pareto optimal architectural design to build DA systems. To find the Pareto optimal solution, we employed the Rhodium Multi-Objective Evolutionary Algorithm (MOEA), which systematically evaluates the trade-offs in DA system designs. Based on data from five live deployments at Cornell University, each DA design can be analyzed based on user defined objectives and evaluated under uncertain farming environments with ROAM. Paired with this, we develop a web interface that allows users to define personalized decision spaces and visualize decision tradeoffs. To help validate ROAM, it was deployed to a commercial farm where the user was recommended a DA architecture design method to increase farm efficiency. ROAM allows users to quickly make key decisions in designing their DA systems to increase farm profitability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.