Abstract

Highway on-ramp merging can be a challenging task for human drivers due to the complex vehicle negotiations and interactions in limited time and space. Connected and automated vehicles (CAVs) have great potential to address the problem and offer many benefits in terms of safety, traffic efficiency, and fuel economy. However, real-time optimal control of CAVs still faces many challenges, including nonlinear dynamics, complex inter-vehicle interactions, and a highly dynamic and uncertain traffic environment. To address these challenges, we develop a novel control approach that balances the solution optimality and computational efficiency to determine optimal merging speed profiles in real time. Specifically, by employing a pseudospectral method and a sequential convex programming approach, two algorithms are proposed and implemented within the model predictive control (MPC) framework to enable real-time generation of optimal solutions for potential on-vehicle applications. The convergence and optimality of the proposed algorithms are validated by comparing with a general-purpose solver under different traffic scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call