Abstract

Fluorescent ubiquitination-based cell-cycle indicator (FUCCI) human cancer (HeLa) cells (red indicates G1; green, S/G2) were exposed to a synchrotron X-ray microbeam. Cells in either G1 or S/G2 were irradiated selectively according to their colour in the same microscopic field. Time-lapse micrographs of the irradiated cells were acquired for 24 h after irradiation. For fluorescent immunostaining, phosphorylated histone proteins (γ-H2AX) indicated the induction of DNA double-strand breaks. The cell cycle was arrested by irradiation at S/G2. In contrast, cells irradiated at G1 progressed to S/G2. The foci were induced in cells irradiated at both G1 and S/G2, suggesting that the G1-S (or S) checkpoint pathway does not function in HeLa cells due to the fact that the cells are functionally p53 deficient, even though X-ray microbeam irradiation significantly induces double-strand breaks. These results demonstrate that single FUCCI cell exposure and live cell imaging are powerful methods for studying the effects of radiation on the cell cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call