Abstract
Blood flow in the microvasculature plays a pivotal role in determining the outcome of injury and repair in inflamed tissue. Real-time observation of the kidney microvasculature, including the glomerular capillary tufts, is extremely difficult because of the methodological limitations of currently available microscope optics. In the present study, we attempted to analyze hemodynamic events that occurred in vivo during microvascular regeneration following destruction of the glomerular capillary tuft, functionally and quantitatively by the use of a real-time confocal laser-scanning microscope (CLSM) system. A polyethylene catheter was inserted into the carotid artery to allow blood pressure measurement. Mesangiolytic lesions producing microaneurysms were induced by the injection of anti-Thy-1.1 antibody. On days 3 and 7 after antibody injection, we examined hemodynamic changes under an intravital microscope equipped with real-time CLSM in combination with a high-speed CCD video camera. To measure vessel diameter and erythrocyte velocity, rats were injected with fluorescein isothiocyanate (FITC)-labeled dextran and FITC-labeled red blood cells (RBCs). On day 3 of the disease, mean arterial blood pressure was 112 +/- 5 mm Hg, which was significantly higher than that of normal rat or of rats on day 7 (93 +/- 1 and 101 +/- 9 mm Hg, respectively). Within mircroaneurysms on day 3, RBC velocity was greatly suppressed. By day 7, RBC velocity, in glomeruli with normal appearances, recovered to about half of the level seen in normal controls (430.6 +/- 284.7 microm/sec), while in narrowed glomerular tufts, it was still only 104.6 +/- 35.1 microm/sec. The noninvasive procedure, using CLSM in combination with a high-speed video camera, allowed us to examine hemodynamic events quantitatively and to analyze microvascular architecture three dimensionally in the kidney. It is useful for estimating hemodynamic response and vascular regeneration in vivo and may be promising for clinical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.