Abstract
This paper addresses the problem of real-time object tracking for unmanned aerial vehicles. We consider the task of object tracking as a classification problem. Training a good classifier always needs a huge number of samples, which is always time-consuming and not suitable for real-time applications. In this paper, we transform the large-scale least-squares problem in the spatial domain to a series of small-scale least-squares problems with constraints in the Fourier domain using the correlation filter technique. Then, this problem is efficiently solved by two stages. In the first stage, a fast method based on recursive least squares is used to solve the correlation filter problem without constraints in the Fourier domain. In the second stage, a weight matrix is constructed to prune the solution attained in the first stage to approach the constraints in the spatial domain. Then, the pruned classifier is used for tracking. To evaluate proposed tracker’s performance, comprehensive experiments are conducted on challenging aerial sequences in the UAV123 dataset. Experimental results demonstrate that proposed approach achieves a state-of-the-art tracking performance in aerial sequences and operates at a mean speed of beyond 40 frames/s. For further analysis of proposed tracker’s robustness, extensive experiments are also performed on recent benchmarks OTB50, OTB100, and VOT2016.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.