Abstract

A real-time neural inverse optimal control for the simultaneous control of indoor air temperature and humidity using a direct expansion (DX) air conditioning (A/C) system has been developed and the development results are reported in this paper. A recurrent high order neural network (RHONN) was used to identify the plant model of an experimental DX A/C system. Based on this model, a discrete-time inverse optimal control strategy was developed and implemented to an experimental DX A/C system for simultaneously controlling indoor air temperature and humidity. The neural network learning was on-line performed by extended Kalman filtering (EKF). This control scheme was experimentally tested via implementation in real time using an experimental DX A/C system. The obtained results for trajectory tracking illustrated the effectiveness of the proposed control scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call