Abstract

Realistic tool-tissue interactive modeling has been recognized as an essential requirement in the training of virtual surgery. A virtual basic surgical training framework integrated with real-time force rendering has been recognized as one of the most immersive implementations in medical education. Yet, compared to the original intraoperative data, there has always been an argument that these data are represented by lower fidelity in virtual surgical training. In this paper, a dynamic biomechanics experimental framework is designed to achieve a highly immersive haptic sensation during the biopsy therapy with human respiratory motion; it is the first time to introduce the idea of periodic extension idea into the dynamic percutaneous force modeling. Clinical evaluation is conducted and performed in the Yunnan First People's Hospital, which not only demonstrated a higher fitting degree (AVG: 99.36%) with the intraoperation data than previous algorithms (AVG: 87.83%, 72.07%, and 66.70%) but also shows a universal fitting range with multilayer tissue. 27 urologists comprising 18 novices and 9 professors were invited to the VR-based training evaluation based on the proposed haptic rendering solution. Subjective and objective results demonstrated higher performance than the existing benchmark training simulator. Combining these in a systematic approach, tuned with specific fidelity requirements, haptically enabled medical simulation systems would be able to provide a more immersive and effective training environment.

Highlights

  • Invasive surgery (MIS) is prevalent in the medical field due to the characteristics of efficiency, less bleeding, and faster recovery [1]

  • Since the needle insertion goes through different tissue layers, such as the skin, fat, and muscle, to reach an internal organ [2, 3], it is hard to handle the puncture position angle and force during the operation; Minimally invasive surgery (MIS) has strict requirements for surgeons: they must undergo a long training period to gain surgical experience, which means the curve of surgical learning on this minimally invasive surgery is extremely steep

  • The survey showed that 7 participants (77.8%) would use our framework to train novices and 8 urologists (88.9%) considered the kidney model as an accurate anatomic representation with only 1 participant (11.1%) who did not agree with this statement. 6 participants (66.7%) considered the depicted the graphic simulation is as real as the real surgical scene

Read more

Summary

Introduction

Invasive surgery (MIS) is prevalent in the medical field due to the characteristics of efficiency, less bleeding, and faster recovery [1]. Inexperienced surgeons and interns usually use animals, artificial models, and cadavers for surgical training, but since the material characteristics of artificial models are quite different from real human tissues, they cannot achieve the effect of training because of the lack of reality. It is important to provide a good surgical training platform for the inexperienced medical personnel and interns. Surgical procedure simulations and robot-assisted surgery provide a good training platform for MIS training. Virtual reality (VR) emerged as an essential technology of medical education applications in recent years; benefiting from these cutting-edge facilities, surgical procedure simulations and robot-assisted surgery

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.