Abstract

AbstractThe need for more efficient use of energy in water distribution systems is increasing constantly due to increasing energy prices. A new methodology for optimized real-time operation of a water distribution system is developed and presented here. The methodology is based on the integration of three models: (1) real-time demand forecasting model, (2) hydraulic simulation model of the system, and (3) optimization model. The optimization process is driven by the cost minimization of the energy used for pumping and the maximization of operational reliability. The latter is quantified using alternative measures into the optimization process in order to mimic the conservative attitude to pump scheduling often adopted by control room operators in real-life systems. Optimal pump schedules were generated by using a multialgorithm-genetically-adaptive-method (AMALGAM), hydraulic simulations are performed by using the EPANET2 model, and demand forecasting was performed by using the recently developed DAN2-H m...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.